福田の数学〜中央大学2023年理工学部第3問〜関数の変曲点と面積 - 質問解決D.B.(データベース)

福田の数学〜中央大学2023年理工学部第3問〜関数の変曲点と面積

問題文全文(内容文):
$\Large\boxed{3}$ $f(x)=\displaystyle\frac{1}{1+e^{-x}}$とし、曲線$y$=$f(x)$をCとする。以下の問いに答えよ。
(1)曲線Cの変曲点Pの座標を求めよ。
(2)曲線Cの点Pにおける接線$l$の方程式を求めよ。また、直線$l$と直線$y$=1の交点の$x$座標$a$を求めよ。
(3)$b$を(2)で求めた$a$より大きい実数とする。曲線Cと直線$y$=1, $x$=$a$, $x$=$b$で囲まれた部分の面積$S(b)$を求めよ。
(4)$\displaystyle\lim_{b \to \infty}S(b)$を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)=\displaystyle\frac{1}{1+e^{-x}}$とし、曲線$y$=$f(x)$をCとする。以下の問いに答えよ。
(1)曲線Cの変曲点Pの座標を求めよ。
(2)曲線Cの点Pにおける接線$l$の方程式を求めよ。また、直線$l$と直線$y$=1の交点の$x$座標$a$を求めよ。
(3)$b$を(2)で求めた$a$より大きい実数とする。曲線Cと直線$y$=1, $x$=$a$, $x$=$b$で囲まれた部分の面積$S(b)$を求めよ。
(4)$\displaystyle\lim_{b \to \infty}S(b)$を求めよ。
投稿日:2023.10.06

<関連動画>

福田のわかった数学〜高校3年生理系080〜グラフを描こう(2)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(2)\hspace{50pt}\\
y=\cos2x-2\cos x  (0 \leqq x \leqq 2\pi)\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 

3次方程式の解と係数の関係 あっという間に出す方法もあるよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ方程式を1つ例示せよ.
この動画を見る 

慶應義塾大 直線の傾き

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016慶応義塾大学過去問題
aは整数、aの値は?
$f(x)=x^3-x^2-x+c$
$A(0,f(x)),B(a,f(a))$
直線ABと$x=\frac{a}{3}$におけるf(x)の接線が直交する。
この動画を見る 

複素数 広島大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.

1966広島大過去問
この動画を見る 

【数Ⅱ】虚数を解に持つ2次方程式【最小多項式・解と係数の関係を使う】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2次方程式x^2+ax+b=0の解の1つが3+iであるとき,
実数の定数a,bの値を求めよ.$
この動画を見る 
PAGE TOP