18神奈川県教員採用試験(数学:数列) - 質問解決D.B.(データベース)

18神奈川県教員採用試験(数学:数列)

問題文全文(内容文):
$S_n = \displaystyle \sum_{k=1}^n a_k$
$S_n = 2a_n+4n -3 (n=1,2,3,\cdots)$ のとき$a_n$を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$S_n = \displaystyle \sum_{k=1}^n a_k$
$S_n = 2a_n+4n -3 (n=1,2,3,\cdots)$ のとき$a_n$を求めよ。
投稿日:2020.05.13

<関連動画>

佐賀大 確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 佐賀大学 過去問

0,1,2,3のカードから1枚選んでメモをしてもどすのを$n$回くり返し、
選んだカードの和を$S_n$とする。
$S_n$が3で割り切れる確率$p_n$、3で割って1余る確率$q_n$を求めよ。
この動画を見る 

数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{3n-1}-7^{2n-2}$は15の倍数であることを示せ
この動画を見る 

山形大 三項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=-1$

一般項を求めよ
$2\displaystyle \sum_{k=1}^n a_{k}=3a_{n+1}-2a_{n}-1$

出典:2006年山形大学 過去問
この動画を見る 

2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$

整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$

(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ

(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ


出典:2019年東京工業大学 過去問
この動画を見る 

福田のおもしろ数学309〜自然数から自然数への関数f(n)に関する関数方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$$自然数を自然数へ写す関数f(n)が次を満たす。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow \frac{1}{f(a)}+\frac{1}{f(b)}=\frac{1}{f(c)}$$
$$このような関数f(n)をすべて求めて下さい。$$
この動画を見る 
PAGE TOP