福田の一夜漬け数学〜図形と方程式〜内分・外分公式、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜内分・外分公式、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-1,1),B(1,-2),C(5,0)$がある。次の点の座標を求めよ。
(1)線分ABを2:1に内分する点。
(2)線分CAを2:1に外分する点。
(3)線分BCの中点。
(4)$\triangle$ ABCの重心。
(5)4点A,B,C,Dが平行四辺形の4つの頂点になるような点D。
単元: #数A#数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-1,1),B(1,-2),C(5,0)$がある。次の点の座標を求めよ。
(1)線分ABを2:1に内分する点。
(2)線分CAを2:1に外分する点。
(3)線分BCの中点。
(4)$\triangle$ ABCの重心。
(5)4点A,B,C,Dが平行四辺形の4つの頂点になるような点D。
投稿日:2018.07.14

<関連動画>

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 

【数Ⅱ】【図形と方程式】2直線の関係1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線

$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
この動画を見る 

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 

【高校数学】 数Ⅱ-52 点と直線②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2点間の距離を求めよう。

①A(1,-1)、B(5,2)

②A(-4,-2),B(-3,5)

③3点A(-1,3)、B(1,-3)、C(-3,-1)を頂点とする△ABCはどのような三角形か求めよう。
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP