早稲田大学 数列、複素数 - 質問解決D.B.(データベース)

早稲田大学 数列、複素数

問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
投稿日:2019.05.29

<関連動画>

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
この動画を見る 

【数B】【数列】漸化式7 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、1辺の長さ1の正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_1$とする。
同様に、新しくできた正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_2$とする。
以下同様に、この操作を$n$回行った後にできる
正方形の面積を$S_n$とする。

(1) $S_n$をnの式で表せ。
(2) $\displaystyle \sum_{k=1}^n S_n$を求めよ。
この動画を見る 

【高校数学】階差数列の漸化式~分かりやすく~ 3-17【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【高校数学】数Ⅲ-71 数列の極限⑦(無限等比数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=1,a_{n+1}=\dfrac{1}{3}a_n+2(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。

②$a_1=o,a_2=1,a_{n+2}=\dfrac{1}{4}(a_{n+1}+3a_n)(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。
この動画を見る 

佐賀大 確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 佐賀大学 過去問

0,1,2,3のカードから1枚選んでメモをしてもどすのを$n$回くり返し、
選んだカードの和を$S_n$とする。
$S_n$が3で割り切れる確率$p_n$、3で割って1余る確率$q_n$を求めよ。
この動画を見る 
PAGE TOP