福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
投稿日:2022.04.23

<関連動画>

【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)$2\vec{ a }$
(2)$-3\vec{ b }$
(3)$\vec{ a }+\vec{ b }$
(4)$3\vec{ b }-\vec{ a }$
この動画を見る 

【数C】平面ベクトル:円のベクトル方程式(2点が直径の両端)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
この動画を見る 

【数C】単位ベクトルを成分で表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題616
vec(a)=(-3,4)と同じ向きの単位ベクトルvec(e)を求めよ。
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(5)〜平面ベクトルの成分と絶対値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\vec{a}+\vec{b}=(3,4),\vec{a}-\vec{b}=(1,2)$
のとき
$|2\vec{a}-3\vec{b}|$
の値を求めよ。

2023中央大学経済学部過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 
PAGE TOP