問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}
2022大阪大学文系過去問
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}
2022大阪大学文系過去問
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}
2022大阪大学文系過去問
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}
2022大阪大学文系過去問
投稿日:2022.04.23