【高校数学】 数A-81 有限小数と循環小数 - 質問解決D.B.(データベース)

【高校数学】 数A-81 有限小数と循環小数

問題文全文(内容文):
既約分数の形にしたとき,分母の素因数が
①と①のみの分数は有限小数となる.

②右の分数のうち,有限小数となるものを選ぼう.

$\dfrac{12}{55},\dfrac{6}{105},\dfrac{9}{240},\dfrac{126}{450}$

③分数$\dfrac{11}{101}$を小数で表したとき,
小数第$75$の数字を求めよう.
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
既約分数の形にしたとき,分母の素因数が
①と①のみの分数は有限小数となる.

②右の分数のうち,有限小数となるものを選ぼう.

$\dfrac{12}{55},\dfrac{6}{105},\dfrac{9}{240},\dfrac{126}{450}$

③分数$\dfrac{11}{101}$を小数で表したとき,
小数第$75$の数字を求めよう.
投稿日:2016.06.13

<関連動画>

【中学数学】ルートの問題演習~代入する問題のテクニック~ 2-11【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x=2-\sqrt{3}$のとき、$x^2-4x-1$の値を求めよ
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

指数の計算 穴埋め

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(-3x^{ \boxed{ア}}y)^{ \boxed{イ}} = -27x^6y^{ \boxed{ウ}}$
この動画を見る 

中央値 最頻値 平均値  A

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
生徒20人が借りた本の冊数について
正しいものを選べ
ア 合計40冊
イ 最頻値は1冊
ウ 中央値は2冊
エ 平均値より多くの本を借りたのは6人
*図は動画内参照
2021千葉県(改)
この動画を見る 

【数Ⅰ】数と式:x+y+z=xy+yz+zx=2√2+1, xyz=1を満たす実数x,y,zに対して、次の式の値を求めよう。(1)1/x+1/y+1/z (2)x²+y²+z² (3)x³+y³+z³

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y+z=xy+yz+zx=2\sqrt2+1, xyz=1$を満たす実数x,y,zに対して、次の式の値を求めよう。(1)$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ (2)$x^2+y^2+z^2$ (3)$x^3+y^3+z^3$
この動画を見る 
PAGE TOP