【高校数学】 数A-81 有限小数と循環小数 - 質問解決D.B.(データベース)

【高校数学】 数A-81 有限小数と循環小数

問題文全文(内容文):
既約分数の形にしたとき,分母の素因数が
①と①のみの分数は有限小数となる.

②右の分数のうち,有限小数となるものを選ぼう.

$\dfrac{12}{55},\dfrac{6}{105},\dfrac{9}{240},\dfrac{126}{450}$

③分数$\dfrac{11}{101}$を小数で表したとき,
小数第$75$の数字を求めよう.
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
既約分数の形にしたとき,分母の素因数が
①と①のみの分数は有限小数となる.

②右の分数のうち,有限小数となるものを選ぼう.

$\dfrac{12}{55},\dfrac{6}{105},\dfrac{9}{240},\dfrac{126}{450}$

③分数$\dfrac{11}{101}$を小数で表したとき,
小数第$75$の数字を求めよう.
投稿日:2016.06.13

<関連動画>

(x-y)⁵+(y-z)⁵+(z-x)⁵を因数分解せよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-y)^5+(y-z)^5+(z-x)^5$を因数分解せよ.
この動画を見る 

1の位が5の数の2乗は1秒で計算できるよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$25^2=??$
$35^2=??$
$45^2=??$
$55^2=??$
$65^2=??$
$75^2=??$
$85^2=??$
$95^2=??$
$105^2=??$
$115^2=??$
 ・
 ・
 ・
$195^2=??$
$205^2=??$
この動画を見る 

質問への返答 因数分解 a^3+b^3+c^3-3abc

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3+c^3-3abc$
この動画を見る 

6次式の因数分解 広島市立大

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数の範囲で$x^6+1$を因数分解せよ.

2020広島市立大(類)過去問
この動画を見る 

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
この動画を見る 
PAGE TOP