群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で

津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で

津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
投稿日:2018.10.25

<関連動画>

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

【数B】【数列】条件a1=4, an+1=4an+8/an+6によって定められる数列{an}に対して、bn=an-2/an+4とおくと、数列{bn}は等比数列である。数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(4)3項間の漸化式〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=5a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=4a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

2023にしたかったのだけど‥‥

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt5+\sqrt7)^{2022}$の1の位の数を求めよ.
この動画を見る 

日本獣医生命科学大 例のあれ

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
この動画を見る 
PAGE TOP