【数C】【平面上の曲線】極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。

問題文全文(内容文):
極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、l上の動点をPとする。極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。
チャプター:

00:00 スタート
00:10 図のイメージ
00:33 P,Qをおく
02:29 答え

単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、l上の動点をPとする。極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。
投稿日:2025.06.07

<関連動画>

高専数学 微積I #226(1) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

【高校数学】数Ⅲ-40 曲線の媒介変数表示①

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の曲線を,角$\theta$を媒介変数として表せ.

①$9x^2+y^2=16$

②$x^2+y^2=16$

③$4x^2-9y^2=36$
この動画を見る 

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
この動画を見る 

重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#積分とその応用#2次曲線#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学検定#数学検定1級#数学(高校生)#数C#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 
PAGE TOP