きっと良問 - 質問解決D.B.(データベース)

きっと良問

問題文全文(内容文):
P(x)はxの3次式でP(11)=11,P(12)=12,P(13)=14,P(14)=15である.
P(15)のときはいくつであるか求めよ.
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
P(x)はxの3次式でP(11)=11,P(12)=12,P(13)=14,P(14)=15である.
P(15)のときはいくつであるか求めよ.
投稿日:2022.04.21

<関連動画>

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 

指数方程式 (数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{8^x+27^x}{12^x+18^x} = \frac{7}{6}$
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
この動画を見る 

どう解くか?だ。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$0.2(0.1x -0.8) = \frac{4x+7}{50}$

法政大学
この動画を見る 
PAGE TOP