【数Ⅱ】【式と証明】等式の証明4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】等式の証明4 ※問題文は概要欄

問題文全文(内容文):
$x+y+z=0 ,2x^2+2y^2-z^2=0$ のとき、$x=y$ であることを証明せよ。
チャプター:

0:00 オープニング
0:06 問題文
0:14 解説

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y+z=0 ,2x^2+2y^2-z^2=0$ のとき、$x=y$ であることを証明せよ。
投稿日:2025.03.02

<関連動画>

【ゼロからわかる】二項定理を3項で利用する(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
$(x+2y-z)^6$  $[x^3y^2z]$
この動画を見る 

【高校数学】 数Ⅱ-12 恒等式①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$(3a+b)x+(2a-b-10)=0$

②$a(x-3)+b(x+1)=5x-3$

③$x^2=a(x-2)^2+b(х-2)+c$
この動画を見る 

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 

分数の割り算はひっくり返して掛けるのよ!そう決まってるの⁉️

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
分数の割り算に関して解説していきます.
この動画を見る 

福田のおもしろ数学564〜1分チャレンジ!数値計算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{2025^3+2024^3+3\cdot 2025\cdot 2024-1}{2026^2+2025^2+1}$

を計算して下さい。
    
この動画を見る 
PAGE TOP