【高校数学】和積の公式・積和の公式~覚えず導こう~【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】和積の公式・積和の公式~覚えず導こう~【数学Ⅱ】

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2022.12.18

<関連動画>

【数Ⅱ】【三角関数】三角関数の合成7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2(sinx+cosx)+2sinxcosx+1 (0x<2π)
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲であるθ
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、h<aとする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度をα、Pの正面から左のゴールポスト
までの角をβとしたとき、次頁の解放の文章を完成させなさい。

(解法)tanθを最も大きくするxを求める問題と考えることができる。
tanθ=tan    =tanαtanβ1+tanαtanβ=    ×xx2+    
tanθの逆数を考えると、相加相乗平均の定理より
1tanθ=x    +    x×    2        
であり、1tanθが最小、すなわちtanθが最大となるのはx=    のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
x=    mのときに、θが最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、AP=t (0<t<3)を満たす点Pをとる。
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。
α=OAB, β=OBA
とおく。tanα, tanβ,tan(α+β)tで表すと、
tanα=, tanβ=,
 tan(α+β)=である。
0<α+β<π2であるようなtの範囲はである。
tはの範囲にあるとする。点A, Bから円Oに引いた接線の接点のうち、
PでないものをそれぞれQ, Rとすると、QAB+RBA<πである。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと である。
また、tの範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲はである。

2022明治大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 三角関数(25) 重要な変形(3)
外接円の半径が1のABCがある。
この三角形の内接円の半径は12以下であることを示せ。
この動画を見る 

三角関数の基本問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1sin10°3cos10°
これを解け.
この動画を見る 
PAGE TOP preload imagepreload image