神戸大 複素数の2次方程式 - 質問解決D.B.(データベース)

神戸大 複素数の2次方程式

問題文全文(内容文):
$x^2+i=0$を解け

出典:1971年神戸大学 過去問
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+i=0$を解け

出典:1971年神戸大学 過去問
投稿日:2020.03.15

<関連動画>

ざ・見掛け倒し 複素数の基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$のとき,$x^{2020^{2021}}+\dfrac{1}{x^{2021^{2021}}}$の値を求めよ.
この動画を見る 

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

【数Ⅱ】【複素数と方程式】複素数の純虚数、共役 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの複素数a+biと2-3iの和が純虚数、積が実数となるように、実数a, bの値を定めよ。

虚数α、βの和、積がともに実数ならば、α、βは互いに共役であることを示せ。
この動画を見る 

茨城大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$


(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?

出典:2005年茨城大学 過去問
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 
PAGE TOP