問題文全文(内容文):
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}
2022共通テスト数学過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}
2022共通テスト数学過去問
投稿日:2022.01.16