問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
投稿日:2022.07.18