名古屋大学 3次方程式 正の実数解をもつ条件 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

名古屋大学 3次方程式 正の実数解をもつ条件 Mathematics Japanese university entrance exam

問題文全文(内容文):
$x^3-5ax^2+3a^2x+a=0$が正の実数解をもつための$a$の範囲

出典:2001年名古屋大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-5ax^2+3a^2x+a=0$が正の実数解をもつための$a$の範囲

出典:2001年名古屋大学 過去問
投稿日:2019.02.09

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを実数とする。次の2次方程式の解の1つが[ ]内の数であるとき、他の解を求めよ。また、定数pの値を求めよ。
(1) $2x^2+10x+p=0$ $[\displaystyle \frac{1}{2}
] $
(2)$x^2+px+4=0$ $[1+\sqrt{3}i]$

2次方程式$x^2-2x+7=0$の2つの解をα,βとするとき、次の2数を解とする2次方程式を作れ。
(1) α+2,β+2
(2) -2α, -2β
(3) α², β²

2次方程式$x^2-5x+5=0$は異なる2つの実数解をもつ。2つの実数解の小数部分を解とする2次方程式を作れ。
この動画を見る 

福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
この動画を見る 

北大の良問!解けますか?【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$k$を実数の定数とし、$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x$
$-k+1$とする。

(1)$f(k-1)$の値を求めよ。
(2)$\vert k \vert <2$のとき、不等式$f(x)≧0$を解け。

北海道大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
この動画を見る 

山梨大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{1}{2}+\displaystyle \frac{\sqrt{ 3 }}{2}i$

$z^5+z^4+z^2+z+1$の値を求めよ。

出典:山梨大学 過去問
この動画を見る 
PAGE TOP