18和歌山県教員採用試験(数学:6番 二項定理) - 質問解決D.B.(データベース)

18和歌山県教員採用試験(数学:6番 二項定理)

問題文全文(内容文):
$\boxed{6}$

$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
投稿日:2021.05.04

<関連動画>

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 

大学入試問題#919「昔は落ち着いた問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。

出典:一橋大(1960)
この動画を見る 

分数の計算 渋谷教育学園幕張高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} +\frac{1}{20} + \frac{1}{30} + \frac{1}{42}
+ \frac{1}{56} + \frac{1}{72}$

渋谷教育学園幕張高等学校
この動画を見る 

【数Ⅱ】式と証明:分数式の基本2

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の分数式を約分せよ。$\dfrac{a^3-a^2b+ab^2}{a^3+b^3}$
この動画を見る 

福田の数学〜京都大学2025文系第5問〜平面が定点を通ることの証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#恒等式・等式・不等式の証明#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標空間の$4$点$O,A,B,C$同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$

が成り立つようにとる。

$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点を通ることを示せ。

$2025$年京都大学文系過去問題
この動画を見る 
PAGE TOP