すべて選べ。高校の内容だけど、中学生も知っておいて損はない。 - 質問解決D.B.(データベース)

すべて選べ。高校の内容だけど、中学生も知っておいて損はない。

問題文全文(内容文):
$n(n+1)(n+5)$は何の倍数?(n:整数)
すべて選べ
(a)2の倍数
(b)3の倍数
(c)6の倍数
(d)12の倍数
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n(n+1)(n+5)$は何の倍数?(n:整数)
すべて選べ
(a)2の倍数
(b)3の倍数
(c)6の倍数
(d)12の倍数
投稿日:2021.11.29

<関連動画>

慶應女子高校 整数問題 慶應大学理工学部の過去問!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方の和で表せる2つの数の積は平方の和で表せることを証明せよ.

1962慶応理工過去問
この動画を見る 

三乗根の整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$(m,n) m\gt 0$をすべて求めよ.
$\sqrt[3]{7+\sqrt m}+\sqrt[3]{7-\sqrt m}=n$
この動画を見る 

変形できるかできないかが分かれ目    聖望学園

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{6 \sqrt n}{n}$が自然数となる自然数nは何個?

聖望学園高等学校
この動画を見る 

福田のおもしろ数学146〜3m+5nで作れない自然数を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
この動画を見る 

素数にならないのはなぜ? 洛星

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
この動画を見る 
PAGE TOP