福田の数学〜立教大学2024年経済学部第3問〜ベクトルと平面幾何 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年経済学部第3問〜ベクトルと平面幾何

問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
投稿日:2024.07.19

<関連動画>

【数B】平面ベクトル:ベクトルの基本② ベクトルの大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの大きさの求め方に関して解説していきます.
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その2

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 

【数C】【ベクトルの内積】2つのベクトルx, yが2x-y=(0,4), 2|x|=|y|, xy=6を満たすとき, x, yを求めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
この動画を見る 

【数C】ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
この動画を見る 
PAGE TOP