東大 不等式 - 質問解決D.B.(データベース)

東大 不等式

問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.

1995東大(文理共通)
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.

1995東大(文理共通)
投稿日:2020.12.21

<関連動画>

00京都府採用試験(数学:3番相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3⃣3つの正の数の相加平均と相乗平均の関係を記述し、それを証明せよ。
この動画を見る 

福田のおもしろ数学513〜3つの数のうち少なくとも2つは等しいことの証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y,z$は正の実数であり、

任意の自然数$n$について$x^n,y^n,z^n$が

三角形の$3$辺をなすとき、

$x,y,z$の少なくとも$2$つは等しくことを

証明して下さい。
   
この動画を見る 

福田のおもしろ数学455〜二重のシグマがかかった不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

任意の実数$a_1,a_2,\cdots a_n$に対して

$\displaystyle \sum_{j=1}^n \left(\displaystyle \sum_{i=1}^n \dfrac{a_ia_j}{i+j-1}\right)\geqq 0$

を証明して下さい。
   
この動画を見る 

分数式の計算 千葉工業大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2}{x} + \frac{x-2}{x^2+x}$を簡単にせよ

千葉工業大学
この動画を見る 

大学入試問題#251 新潟大学(2012) #相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: ますただ
問題文全文(内容文):
$a,b,c,d$:正の実数
$\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[ 4 ]{ abcd }$を示せ

出典:2012年新潟大学 入試問題
この動画を見る 
PAGE TOP