福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限 - 質問解決D.B.(データベース)

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
投稿日:2024.02.12

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(1)点O$を中心とする$半径1$の円に内接する$三角形ABC$において
$-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }$
が成り立っているとする。また$直線OA$と$直線BC$の交点を$P$とする。
このとき$線分BC,OP$の長さを求めると$BC=\boxed{\ \ (あ)\ \ },$$OP=\boxed{\ \ (い)\ \ }$である。さらに$三角形ABC$の面積は$\boxed{\ \ (う)\ \ }$である。


2021慶應義塾大学医学部過去問
この動画を見る 

【高校数学】 数B-1 有向線分とベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照
この動画を見る 

【高校数学】 数B-52 座標空間における図形③

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる
円の半径が$3\sqrt3$であるとき,$a$の値を求めよ.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

この公式の意味分かる?

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
内積の公式に関して解説していきます。
この動画を見る 

福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。

2023一橋大学文系過去問
この動画を見る 
PAGE TOP