2022東北医科薬科大(医)微分・積分の基本問題 - 質問解決D.B.(データベース)

2022東北医科薬科大(医)微分・積分の基本問題

問題文全文(内容文):
$f(x)=x^4-4x^3$上の$(P,f(P))$における接線を$\ell $とする.
(1)$f(x)$と$\ell$の共有点が接線のみである$P$の範囲を求めよ.
(2)$P$が最小値のとき,$f(x)$と$\ell$で囲まれる面積を求めよ.

東北医科薬科大(医)過去問
単元: #数学(中学生)#数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3$上の$(P,f(P))$における接線を$\ell $とする.
(1)$f(x)$と$\ell$の共有点が接線のみである$P$の範囲を求めよ.
(2)$P$が最小値のとき,$f(x)$と$\ell$で囲まれる面積を求めよ.

東北医科薬科大(医)過去問
投稿日:2022.01.25

<関連動画>

#広島市立大学2024#不定積分_22#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{e^{ \frac{x}{2}}} dx$

出典:2024年広島市立大学後期 不定積分問題
この動画を見る 

【数Ⅱ】図形と方程式:通過領域の基本<その3>逆像法

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aが全ての実数を動くとき、$y=x^2+ax^a$が通りうる(x,y)全体の領域を図示せよ。
逆像法で解きます。「存在する」ような条件をどう立てるか??
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 

三角関数の基礎問題です!2通りで解説【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$\angle A=60°$であるとする。

(1)$sinB+sinC$の取り得る値の範囲を求めよ。

(2)$sinBsinC$の取り得る値の範囲を求めよ。

一橋大過去問
この動画を見る 

山梨大2020 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{(\sqrt3+i)^n(\sqrt3+3i)}{-1+i}$は実数出ないことを示せ.

2020山梨大過去問
この動画を見る 
PAGE TOP