2022東北医科薬科大(医)微分・積分の基本問題 - 質問解決D.B.(データベース)

2022東北医科薬科大(医)微分・積分の基本問題

問題文全文(内容文):
$f(x)=x^4-4x^3$上の$(P,f(P))$における接線を$\ell $とする.
(1)$f(x)$と$\ell$の共有点が接線のみである$P$の範囲を求めよ.
(2)$P$が最小値のとき,$f(x)$と$\ell$で囲まれる面積を求めよ.

東北医科薬科大(医)過去問
単元: #数学(中学生)#数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3$上の$(P,f(P))$における接線を$\ell $とする.
(1)$f(x)$と$\ell$の共有点が接線のみである$P$の範囲を求めよ.
(2)$P$が最小値のとき,$f(x)$と$\ell$で囲まれる面積を求めよ.

東北医科薬科大(医)過去問
投稿日:2022.01.25

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の点A(a,b)を1つ固定し、曲線$y=x^2$上の点P$(x,x^2)$と点A
との距離の2乗をg(x)とおく。関数$y=g(x)$のグラフが区間$(-\infty,\infty)$において下に凸
となるための条件は$b \leqq \boxed{\ \ ア\ \ }$となることである。$b \gt \boxed{\ \ ア\ \ }$のとき$y=g(x)$のグラフは
2つの変曲点をもち、そのx座標は$\boxed{\ \ イ\ \ }$及び$\boxed{\ \ ウ\ \ }$である。
ただし$\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }$とする。また、関数$y=g(x)$が極小となるxがただ1つであるために
a,bが満たすべき条件を$b \leqq F(a)$と書くと、$F(a)=\boxed{\ \ エ\ \ }$ である。
$b= F(a)$のとき、関数$y=g(x)$は$x=\boxed{\ \ オ\ \ }$において最小値をとる。
さらに、連立不等式$x \geqq 0,\ y \geqq x^2$が表す領域をDとするとき、
曲線$y=F(x)$のDに含まれる部分の長さLを求めると、$L=\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ

(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.

群馬大過去問
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 27^{x-1}+729x-2187=0$
これの実数解を解け.
この動画を見る 

福田のおもしろ数学018〜1分以内に証明できたら天才〜不等式が常に成り立つ証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
どんなxに対しても次の方程式が成り立つことを証明せよ。
$x^{16}-x+1\gt 0$
この動画を見る 

大学入試問題#907「チャートに掲載されてる?」 #信州大学理学部(2024) #極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{x^3-x^2+(2a-3)x+b}{x^2-(a-1)x-a}=3$
が成り立つように定数$a$と$b$の値を求めよ。

出典:2024年信州大学理学部
この動画を見る 
PAGE TOP