2つの三角形の関係に注目!! B 2021 慶應義塾 - 質問解決D.B.(データベース)

2つの三角形の関係に注目!!  B 2021 慶應義塾

問題文全文(内容文):
△BOC=1のとき△AOBの面積=?
*図は動画内参照

2021慶應義塾高等学校
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△BOC=1のとき△AOBの面積=?
*図は動画内参照

2021慶應義塾高等学校
投稿日:2021.02.26

<関連動画>

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

良問のはずだったんだけどなー

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bを自然数とする.
$a^2+b^2=13^4$(a,b)を2組求めよ.
この動画を見る 

3つの並んだ合同な正三角形

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1つの正三角形の面積=18
斜線部の面積は?
*図は動画内参照
この動画を見る 

整数問題だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第2問〜確率の基本性質と非復元抽出の条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 袋の中に、1から9までの番号を重複なく1つずつ記入したカードが9枚入っている。A,B,C,Dの4人のうちDがさいころを投げて、1の目が出たらAが、2または3の目が出たらBが、その他の目が出たらCが、袋の中からカードを1枚引き、カードに記入された番号を記録することを試行という。ただし、1度引いたカードは袋に戻さない。この試行を3回続けて行う。また、1回目の試行前のA,B,Cの点数をそれぞれ0としたうえで、以下の(a),(b)に従い、各回の試行後のA,B,Cの点数を定める。
(a)各回の試行においてカードを引いた人は、その回の試行前の自分の点数に、その回の試行で記録した番号を加え、試行後の点数とする。
(b)各回の試行においてカードを引いていない人は、その回の試行前の自分の点数を、そのまま試行後の点数とする。
(1)1回目の試行後、Bの点数が3の倍数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。ただし、0はすべての整数の倍数である。
(2)2回目の試行後、A,B,Cのうち、1人だけの点数が0である確率は$\frac{\boxed{ウエ}}{\boxed{オカ}}$である。
(3)2回目の試行後のAの点数が5以上となる確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(4)2回目の試行後のAの点数が5以上であるとき、3回目の試行後のA,B,Cの点数がすべて5以上である条件付き確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
この動画を見る 
PAGE TOP