福田のおもしろ数学413〜2024個の分数からk個選んできて積を作って合計しよう - 質問解決D.B.(データベース)

福田のおもしろ数学413〜2024個の分数からk個選んできて積を作って合計しよう

問題文全文(内容文):

$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から

異なる$k$個を選んで作った積の総和を$s(k)$とする。

$s(2)+s(4)+s(6)+\cdots +s(2024)$

の値を求めて下さい。
   
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から

異なる$k$個を選んで作った積の総和を$s(k)$とする。

$s(2)+s(4)+s(6)+\cdots +s(2024)$

の値を求めて下さい。
   
投稿日:2025.02.18

<関連動画>

【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次式を証明せよ。
$\displaystyle \sum_{i=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$
$\displaystyle \sum_{i=1}^n k^3=\{ \frac{1}{2}n(n+1)\}^2$
この動画を見る 

9月からでも間に合うチート級参考書<数学編>

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#参考書紹介
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学編】9月からでも間に合う参考書紹介動画です
この動画を見る 

【数B】【数列】その他の数列1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

大学入試問題#638「よくある形」 名古屋市立大学(2021) #数列 #級数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$が
$a_1=2,\ \displaystyle \frac{a_{n+1}}{a_n}=\displaystyle \frac{n}{n+2}$を満たすとき
$\displaystyle \sum_{k=1}^\infty a_k$を求めよ

出典:2021年名古屋市立大学 入試問題
この動画を見る 
PAGE TOP