大阪大 3次関数 - 質問解決D.B.(データベース)

大阪大 3次関数

問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲

出典:2006年大阪大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲

出典:2006年大阪大学 過去問
投稿日:2019.06.23

<関連動画>

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

福田のおもしろ数学151〜面積を2等分する直線が存在する証明

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
左の図形(※動画参照)の面積を2等分する直線が存在することを証明してください。
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 関数 $y=xe^{-x^2+x}$の極値を求めよ。
(2) $2$次関数 $f(x)=ax^2+bx+c$に対して、$F(x)=xe^{f(x)}$で定義された関数$y=F(x)$が極値を持つための、定数$a,b,c$についての必要十分条件を求めよ。
この動画を見る 

福田の数学〜名古屋大学2024年理系第1問〜接線の本数と整数解

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
この動画を見る 

数学「大学入試良問集」【18−8 微分係数の定義】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)

(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。

(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
この動画を見る 
PAGE TOP