シグマの公式暗記してない? - 質問解決D.B.(データベース)

シグマの公式暗記してない?

問題文全文(内容文):
シグマの公式についての動画
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
シグマの公式についての動画
投稿日:2023.09.10

<関連動画>

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

階乗の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る 

等比数列の和を1から解説

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$3+3^2+3^3+ \cdots +3^7$ $(3^8=6561)$
この動画を見る 

東大 確率 漸化式 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91東京大学過去問題
正四面体をn回転がしたとき、最初に床に接していた面が床に接している確率
この動画を見る 

階乗!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$7! \times 6! = \boxed ?!$
この動画を見る 
PAGE TOP