【高校数学】 数B-86 群数列④ - 質問解決D.B.(データベース)

【高校数学】 数B-86 群数列④

問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{2}{1},\dfrac{1}{3},\dfrac{2}{2},\dfrac{3}{1},\dfrac{1}{4},\dfrac{2}{3},\dfrac{3}{2},\dfrac{4}{1},\dfrac{1}{5},\dfrac{2}{4},・・・$
について次の問いに答えよう.

①$\dfrac{5}{22}$は第何項か求めよう.

②この数列の第100項を求めよう.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{2}{1},\dfrac{1}{3},\dfrac{2}{2},\dfrac{3}{1},\dfrac{1}{4},\dfrac{2}{3},\dfrac{3}{2},\dfrac{4}{1},\dfrac{1}{5},\dfrac{2}{4},・・・$
について次の問いに答えよう.

①$\dfrac{5}{22}$は第何項か求めよう.

②この数列の第100項を求めよう.
投稿日:2016.02.22

<関連動画>

17愛知県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
6⃣$2na_n=\displaystyle \sum_{k=1}^n k a_k+n$
$a_n$を求めよ。
この動画を見る 

【基本から詳しく】数学B・数列 和の記号Σ(シグマ)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(1)
$1^2+2^2+3^2+…12^2$


(2)
$\displaystyle \sum_{k=1}^{15} k$


(3)
$\displaystyle \sum_{k=1}^n (2k-3)$


(4)
$\displaystyle \sum_{k=1}^n (k^2+3k+2)$
この動画を見る 

群馬大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p$素数、$m,n$整数$(m \neq 0)$

$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列

$p,m,n$を求めよ

出典:群馬大学 過去問
この動画を見る 

早稲田(教育)見た目は数2か数3 中身は中学入試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=a_2=1,a_{n+2}=a_{n+1}+a_n,\displaystyle \sum_{n=1}^{2019} ia_n,$
$i$は虚数単位である.これを解け.

早稲田大(教育)過去問
この動画を見る 

あれですよ、あれ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{3}{1!+2!+3!}+\dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
この動画を見る 
PAGE TOP