整数問題 最大公約数と最小公倍数 - 質問解決D.B.(データベース)

整数問題 最大公約数と最小公倍数

問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
投稿日:2020.06.16

<関連動画>

割って余る整数問題 慶應女子

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
724を正の整数nで割ると9余り、n+1で割ると4余る。
考えられるnの値をすべて求めよ。

慶應義塾女子高等学校
この動画を見る 

高校入試だけどもガウス記号 大阪星光学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?

大阪星光学院高等学校
この動画を見る 

エレガントな解法もとむ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の性質を満たす最小の自然数Nを求めよ.
「600以下の自然数からどのN個を選んでも,その中に互いに素な2つの自然数の組が存在する。

この動画を見る 

名古屋市立 式の値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?

出典:2012年名古屋市立大学 過去問
この動画を見る 

慶應女子高 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8616$と$5844$を同じ自然数$n$で割ったら,割り切れずその余りが同じ$n$の最大値と
最小値を求めよ.

慶応女子過去問
この動画を見る 
PAGE TOP