福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
投稿日:2024.10.03

<関連動画>

福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta,  \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。

(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。

(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
この動画を見る 

福田の数学〜筑波大学2024理系第1問〜交点の位置ベクトルと面積面積

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{OAB}$ において、$\mathrm{OA}=\mathrm{OB}=2$ とする。$\angle \mathrm{OAB}$ の二等分線と線分 $\mathrm{OB}$ の交点を $\mathrm{C}$ とし、点 $\mathrm{O}$ から直線 $\mathrm{AC}$ に垂線 $\mathrm{OD}$ を引く。$\vec{\mathrm{OA}}=\vec{a}, \, \vec{\mathrm{OB}}=\vec{b}$ とおく。以下の問いに答えよ。
$(1)$ $\vec{\mathrm{AC}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
$(2)$ $\vec{\mathrm{OD}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して
$3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たすとする。
$\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }$とおく。
(1)$\overrightarrow{ BP }$を、$\overrightarrow{ b }$と$\overrightarrow{ AP }$を用いて表せ。
(2)$\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }$となる実数v,wを、tを用いて表せ。
(3)直線APと直線BCの交点をDとする。
$\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }$となる実数x,yを、tを用いて表せ。
(4)$\frac{S_2}{S_1}$を、tを用いて表せ。
(5)tが正の実数全体を動くとき、$\frac{S_2}{S_1}$が最大となるtの値を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 

慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
この動画を見る 
PAGE TOP