福田のおもしろ数学520〜4次方程式が異なる3つの解をもつ条件 - 質問解決D.B.(データベース)

福田のおもしろ数学520〜4次方程式が異なる3つの解をもつ条件

問題文全文(内容文):

方程式

$(x^2-2mx-4(m^2+1))(x^2-4x-2m(m^2+1))=0$

が異なる$3$個の解をもつような

実数$m$をすべて求めよ。
     
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

方程式

$(x^2-2mx-4(m^2+1))(x^2-4x-2m(m^2+1))=0$

が異なる$3$個の解をもつような

実数$m$をすべて求めよ。
     
投稿日:2025.06.05

<関連動画>

【高校数学】数Ⅲ-10 複素数の積の図表示②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.

②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.

③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
この動画を見る 

解けるように作られた問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x-1=0 $の実数解を$ \alpha $とするとき,
$ \sqrt[3]{3\alpha^2-4\alpha}+\sqrt[3]{3\alpha^2+4\alpha+2}$の値を求めよ.
この動画を見る 

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
この動画を見る 

方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.

$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
この動画を見る 
PAGE TOP