福田のおもしろ数学344〜条件付き最小値問題と絶対値の処理 - 質問解決D.B.(データベース)

福田のおもしろ数学344〜条件付き最小値問題と絶対値の処理

問題文全文(内容文):
$\log_{ 4 }( x+2y)+\log_{ 4 } (x-2y)=1$のとき、$|x|ー|y|$の最小値を求めよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\log_{ 4 }( x+2y)+\log_{ 4 } (x-2y)=1$のとき、$|x|ー|y|$の最小値を求めよ。
投稿日:2024.12.11

<関連動画>

どっちがでかい?かなりの大差じゃね?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{100!}$ vs $2^{100}!$
どちらが大きい??

この動画を見る 

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。

2021立教大学理工学部過去問
この動画を見る 

岡山大 対数方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
この動画を見る 

見掛け倒しの方程式 ちょっと気をつけてね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2)^{\log_2(x^2+x-6)^2}=-2x+4$
この動画を見る 

対数の大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\log_2 3$ VS $\log_7 18$
この動画を見る 
PAGE TOP