問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
投稿日:2020.11.09