京都大 整式の剰余 - 質問解決D.B.(データベース)

京都大 整式の剰余

問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.

2013京都大過去問
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.

2013京都大過去問
投稿日:2020.11.09

<関連動画>

ε-N論法 #4 はさみうちの原理

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
この動画を見る 

福田のおもしろ数学283〜関数不等式を満たす関数を求める

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
この動画を見る 

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 

大学入試問題#434「基本的な式変形」 藤田医科大学(2023) #式変形

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt{ 6+2\sqrt{ 5 } }$のとき
$\alpha^5-\alpha^4-12\alpha^3+12\alpha^2+16\alpha$の値を求めよ。

出典:2023年藤田医科大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP