京都大 整式の剰余 - 質問解決D.B.(データベース)

京都大 整式の剰余

問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.

2013京都大過去問
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.

2013京都大過去問
投稿日:2020.11.09

<関連動画>

産業能率大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{100}$を$x^2+x+1$で割った商の$x^{95},x^{88},x^{33}$の係数、および余りを求めよ

出典:産業能率大学 過去問
この動画を見る 

福田のおもしろ数学222〜条件付きの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \geq b \geq c, \, x \geq y \geq z, \, x+y+z=0$ のとき、$ax+by+cz \geq 0$ を示せ。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の不等式を証明せよ。また、等号が成立する条件を求めよ。
ただし、a,b,c,dは全て正の数であるとする。
(1) $\displaystyle \frac{a+b}{2} \geqq \sqrt{ab}$

(2) $\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$

(3) $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$
この動画を見る 

06愛知県教員採用試験(数学:6番 指数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$x$の方程式$4^x-2a\ 2^x+2a^2-a-6=0$が
正負が解を1つずつもつとき,
$a$の値の範囲を求めよ.
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第3問〜不等式の証明と正12角形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!}   (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。

(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。 

2022浜松医科大学医学部過去問
この動画を見る 
PAGE TOP