福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part1 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part1

問題文全文(内容文):
9 関数f(x)と実数tに対し、xの関数tx-f(x)の最大値があればそれをg(t)と書く。
(1)f(x)=x4のとき、任意の実数tについてg(t)が存在する。このg(t)を求めよ。
以下、関数f(x)は連続な導関数f(x)を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)f(x)は増加関数、すなわちabならばf(a)f(b)
(ii)limxf(x)= かつ limxf(x)=
(2)任意の実数tに対して、xの関数tx-f(x)は最大値g(t)を持つことを示せ。
(3)sを実数とする。tが実数全体を動くとき、tの関数st-g(x)は最大値f(s)となることを示せ。
単元: #大学入試過去問(数学)#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
9 関数f(x)と実数tに対し、xの関数tx-f(x)の最大値があればそれをg(t)と書く。
(1)f(x)=x4のとき、任意の実数tについてg(t)が存在する。このg(t)を求めよ。
以下、関数f(x)は連続な導関数f(x)を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)f(x)は増加関数、すなわちabならばf(a)f(b)
(ii)limxf(x)= かつ limxf(x)=
(2)任意の実数tに対して、xの関数tx-f(x)は最大値g(t)を持つことを示せ。
(3)sを実数とする。tが実数全体を動くとき、tの関数st-g(x)は最大値f(s)となることを示せ。
投稿日:2023.08.06

<関連動画>

福田の数学〜京都大学2023年理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 Oを原点とするxyz空間において、点Pと点Qは次の3つの条件(a),(b),(c)を満たしている。
(a):点Pはx軸上にある。
(b):点Qはyz平面上にある。
(c):線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a),(b),(c)を満たしながらくまなく動くとき、線分PQが通過してできる立体の体積を求めよ。

2023京都大学理系過去問
この動画を見る 

【全ての問題は概要欄】大学入試問題#79 大阪大学(2020 改) 微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
0x
関数f(x)=(x+1)1x+1の最大値を求めよ。

出典:2020年大阪大学 入試問題
この動画を見る 

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の各問いに答えよ。
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。
(2)x0を満たすすべての実数xに対して、ex>1+xex2<11+x2
成り立つことを証明せよ。
(3)23<01ex2dx<π4が成り立つことを証明せよ。

2022北里大学医学部過去問
この動画を見る 

京都府採用試験数学【2016】

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。

2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。

3. 複素数(1+3i2)2015+(13i2)2015

4. log23は無理数を示せ

5. OAB=|a1b2a2b1|2を示せ
*図は動画内参照

6. f(x)=e^x sinx
(1) 0xπ y=f(x)の極大値を求めよ。

(2)x軸とy=f(x) (0xπ)で囲まれた面積を求めよ。

7. 12015,22015,,20152015のうち既約分数の個数を求めよ。

8. nN
2(n+11)<1+12+13++1n
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
limxxex=0
(1)方程式2x=x2 (x>0)の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式ax=xa (x>0)を考える。
(a)方程式ax=xa (x>0)の実数解の個数を求めよ。
(b)方程式ax=xa (x>0)でa,xがともに正の整数となるa,xの組(a,x)
をすべて求めよ。ただしaxとする。

2016浜松医科大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image