信州大 4次関数に2点で接する直線 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

信州大 4次関数に2点で接する直線 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
信州大学過去問題
$y=x^4-x^2+x$に相異なる2点で接する直線の方程式を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#数学(高校生)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$y=x^4-x^2+x$に相異なる2点で接する直線の方程式を求めよ。
投稿日:2018.07.14

<関連動画>

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、実数xの関数$f(x)=(x^2+3x+a)(x+1)^2$を考える。
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。
(2)$a \lt 2$のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる
xの値を$\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)$とする。
$f(\alpha_1) \lt f(\alpha_2)$を示せ。
(3)f(x)が$x \lt \beta$において単調減少し、かつ、$x=\beta$において最小値をとるとする。
このとき、aのとりうる値の範囲を求めよ。

2022東北大学理系過去問
この動画を見る 

岩手大 微分の基本

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x-\sqrt{x^2}$は$x=0$で微分可能出ないことを示せ.

2018岩手大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 

タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、

直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。

$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る 
PAGE TOP