問題文全文(内容文):
$\vec{ a }=(3 ,1)$ ,$\vec{ b }=(1 ,2)$ のとし、$\vec{ c }=\vec{ a }+t\vec{ b }$ (tは実数)とする。
(1) $| \vec{ c } |=\sqrt{15}$ のとき、tの値を求めよ。
(2) $| \vec{ c } |$の最小値と、そのときのtの値を求めよ。
$\vec{ a }=(3 ,1)$ ,$\vec{ b }=(1 ,2)$ のとし、$\vec{ c }=\vec{ a }+t\vec{ b }$ (tは実数)とする。
(1) $| \vec{ c } |=\sqrt{15}$ のとき、tの値を求めよ。
(2) $| \vec{ c } |$の最小値と、そのときのtの値を求めよ。
チャプター:
0:00 オープニング
0:06 問題文
0:15 (1)解説
2:00 (2)解説
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学C#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(3 ,1)$ ,$\vec{ b }=(1 ,2)$ のとし、$\vec{ c }=\vec{ a }+t\vec{ b }$ (tは実数)とする。
(1) $| \vec{ c } |=\sqrt{15}$ のとき、tの値を求めよ。
(2) $| \vec{ c } |$の最小値と、そのときのtの値を求めよ。
$\vec{ a }=(3 ,1)$ ,$\vec{ b }=(1 ,2)$ のとし、$\vec{ c }=\vec{ a }+t\vec{ b }$ (tは実数)とする。
(1) $| \vec{ c } |=\sqrt{15}$ のとき、tの値を求めよ。
(2) $| \vec{ c } |$の最小値と、そのときのtの値を求めよ。
投稿日:2025.02.08