数列 千葉大 - 質問解決D.B.(データベース)

数列 千葉大

問題文全文(内容文):
これを解け.

$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$

1979千葉大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$

1979千葉大過去問
投稿日:2020.05.05

<関連動画>

【わかりやすく解説】和の記号Σ(シグマ)(数学B/数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(4)$\displaystyle \sum_{k=1}^n (k^2+3k+2)$
この動画を見る 

福田のおもしろ数学400〜2項展開の係数と次数に関する個数

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\left(\sqrt x+\dfrac{1}{2\sqrt[4]{x}}\right)^n$の展開式を降順に並べたとき、

最初の3項の$x$の係数が等差数列になった。

この展開式の中に$x$の次数が整数となる

項は何個あるか?
この動画を見る 

【数B】漸化式:東大1995年 タイルの敷き詰め

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
この動画を見る 

漸化式 群馬大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$

1979群馬大(医)過去問
この動画を見る 

三項間漸化式(応用)高知大

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.

高知大過去問
この動画を見る 
PAGE TOP