数列 千葉大 - 質問解決D.B.(データベース)

数列 千葉大

問題文全文(内容文):
これを解け.

$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$

1979千葉大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$

1979千葉大過去問
投稿日:2020.05.05

<関連動画>

福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,

$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$

で定義されている。

$a_{2024}+b_{2024}\geqq 88$

であることを証明して下さい。
    
この動画を見る 

【高校数学】 数B-99 数学的帰納法⑤

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=2,a_{n+1}=2-\dfrac{1}{a_n}(n-1,2,3,・・・)$で定義される
数列$\{a_n\}$について,一般項$a_n$を推測し,
それが正しいことを,数学的帰納法を用いて証明しよう.
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 

#14 数検1級1次過去問 数列 数検・教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#その他#数学検定#数学検定1級#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$

$A=\begin{pmatrix}
3 & 0 & 2 \\
-4 & 1 & -3 \\
1 & 5 & -2
\end{pmatrix}$

次の行列を,$\ell A^2+mA+nE$で表せ.
$(\ell,m,n=IR)$

(1)$A^3$
(2)$A^5-5A^4+16A^3-24A^2$
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP