東工大 整数問題 合同式 - 質問解決D.B.(データベース)

東工大 整数問題 合同式

問題文全文(内容文):
$a_n=19^n+(-1)^{n-1}2^{4n-3}$のすべてを割り切る素数を求めよ。
$(n$自然数$)$

出典:1986年東京工業大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=19^n+(-1)^{n-1}2^{4n-3}$のすべてを割り切る素数を求めよ。
$(n$自然数$)$

出典:1986年東京工業大学 過去問
投稿日:2019.12.13

<関連動画>

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 

早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225

早稲田大過去問
この動画を見る 

福田のおもしろ数学261〜整数解を求めるにはどうすればよいか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,n$を正の整数とするとき$a^{n+1}-(a+1)^n=2000$を満たす$a,n$を求めて下さい。
この動画を見る 

【数B】【数列】自然数の式の証明2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
この動画を見る 

【整数問題】考えられる候補は何パターンだろうか【慶應義塾大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。

慶應義塾大過去問
この動画を見る 
PAGE TOP