福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
投稿日:2022.06.30

<関連動画>

【For you動画-17】  数Ⅰ-集合

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={x1xは、10以下の自然数}を全体集合
Uの部分集合A={1.2.5.6.9 }
B={3.8.9.10},C={1.3.4.9.10〕とする。

①$A \cup B=$
②$A \cap B$
③$\overline{ A } \cap B=$
④$\overline{ B \cup C}=$
⑤$(\overline{ A } \cap B)\cup C=$

◎◎U={x1xは10以下の自然数」を全体集合 とする。Uの部分集合A、Bについて、
$\overline{ A } \cap B ${4,5,10},$A \cap \overline{ B } ${3,8}
$\overline{ A } \cap \overline{ B } ${1,6,9}である。

⑥$A \cap B=$
⑦$A=$
⑧$A \cup B=$
この動画を見る 

いきなり展開したら負け!東邦大附属東邦

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式を解け
$(100 - x)(101 -x) = 104-x$

東邦大学付属東邦高等学校
この動画を見る 

整数問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。

一橋大過去問
この動画を見る 

おうぎ形と正方形 令和4年度 愛媛県ラスト問題(改) 数学 2022 入試問題100題解説83問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2022愛媛県
この動画を見る 

42024を素因数分解せよ。2024早稲田実業最初の一問!!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$205^2$の値を利用して42024を素因数分解せよ
(2024早稲田実業学校)
この動画を見る 
PAGE TOP