素数にならないのはなぜ? 洛星 - 質問解決D.B.(データベース)

素数にならないのはなぜ? 洛星

問題文全文(内容文):
N=n2+n+40のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
N=n2+n+40のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
投稿日:2022.08.02

<関連動画>

お茶の水女子大(類) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
a2+3b2=2c2これを満たす自然数(a,b,c)は存在しないことを証明せよ

出典:お茶の水女子大学 過去問
この動画を見る 

群馬大(医) ピタゴラス数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
a2+b2=c2,bが2の累乗がcbの差が1である(a,b,c)をすべて求めよ.

2018群馬大(医)過去問
この動画を見る 

福田のおもしろ数学047〜これができたら天才〜ガウス記号のついた数の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
[13×12024]+[13×22024]+[13×32024]++[13×20232024]を計算してください。
ただし、[x]xを超えない最大の整数を表します。
この動画を見る 

早稲田大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n2+1,2n3+3,6n2+5
全てが素数となる自然数nをすべて求めよ

出典:早稲田大学 過去問
この動画を見る 

九州大学 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、2n1は3の倍数であることを示せ。
(2)nを自然数とする。2n+12n1は互いに素であることを示せ。
(3)p,qは異なる素数とする。2P11=pq2を満たすp,qをすべて求めよ。
この動画を見る 
PAGE TOP preload imagepreload image