福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
投稿日:2018.07.26

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田のわかった数学〜高校2年生030〜円と放物線の位置関係(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(2)\\
\\
\left\{\begin{array}{1}
円\ x^2+(y-r)^2=r^2 (r \gt 0)\\
放物線\ y=x^2
\end{array}\right.\\
\\
の共有点が原点のみとなるrの範囲
\end{eqnarray}
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。\\
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。\\
(\textrm{a})\angle BAC \lt \angle ABCを満たす場合、点Cは第\boxed{\ \ ア \ \ }象限に存在する。\\
(\textrm{b})\angle ABC \lt \angle ACBを満たす場合、点Cは\boxed{\ \ イ \ \ }の\boxed{\ \ ウ \ \ }に存在する。\\
(\textrm{c})\angle ACB \lt \frac{\pi}{2}を満たす場合、点Cは\boxed{\ \ エ \ \ }の\boxed{\ \ オ \ \ }に存在する。\\
(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}を満たす点Cが存在する領域(境界を含む)\\
の面積は\frac{\boxed{\ \ カ \ \ }}{\boxed{\ \ キク \ \ }}\pi-\frac{\sqrt{\boxed{\ \ ケ \ \ }}}{\boxed{\ \ コ \ \ }}である。\\
\\
\\
\boxed{\ \ イ \ \ },\boxed{\ \ エ \ \ }の解答群\\
①点Aを中心とし点Bを通る円\\
②点Bを中心とし点Aを通る円\\
③線分ABを直径とする円\\
④離心率が0.5で2点O,Aを焦点とする楕円\\
⑤離心率が0.5で2点O,Bを焦点とする楕円\\
⑥離心率が0.5で2点A,Bを焦点とする楕円\\
⑦線分ABを一辺にもち、重心のy座標が正である正三角形\\
⑧線分ABを一辺にもち、重心のy座標が正である正方形\\
\\
\\
\boxed{\ \ ウ \ \ },\boxed{\ \ オ \ \ }の解答群\\
①内部\ \ \ ②周上\ \ \ ③外部\ \ \ ④重心\\
\\
\\
(2)座標空間内の4点A(-1,0,0),B(1,0,0),C(s,t,0),Dを原点とし、\\
\angle BAC \lt \angle ABC \lt \angle ACB\\
を満たす四面体を考える。t \gt 0であり、点Dのz座標は正であるとする。\\
(\textrm{a})\angle ADC=\frac{\pi}{2}を満たす場合、点Dは\boxed{\ \ サ \ \ }に存在する。\\
(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}を満たす場合、\\
点Dのx座標はsであり、点Dは(s,\boxed{\ \ シ \ \ },0)を中心とする\\
半径\boxed{\ \ ス \ \ }の円周上にある。\\
(\textrm{c})以下ではt=\frac{4}{3}とする。設問(1)の結果から、点Cのx座標sは\\
\boxed{\ \ セ \ \ } \lt s \lt -\boxed{\ \ ソ \ \ }+\frac{\boxed{\ \ タ \ \ }\sqrt{\boxed{\ \ チ \ \ }}}{\boxed{\ \ ツ \ \ }}の範囲をとりうる。この範囲でsが変化\\
するとき、\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}を満たす四面体ABCDの体積は\\
s=\frac{\boxed{\ \ テ \ \ }}{\boxed{\ \ ト \ \ }}のとき最大値\frac{\boxed{\ \ ナ \ \ }}{\boxed{\ \ 二ヌ \ \ }}をとる。
\end{eqnarray}

2022杏林大学医学部過去問
この動画を見る 

福田のわかった数学〜高校2年生024〜2つの円の共通接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の共通接線

円$C_1:(x-1)^2+y^2=1$
円$C_2:(x-4)^2+y^2=4$

の共通接線の方程式を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ xy平面上の放物線P:y^2=4x上に異なる2点A,Bをとり、A,Bそれぞれに\\
おいてPへの接線と直交する直線をn_A,\ n_Bとする。aを正の数として、点Aの座標\\
を(a,\ \sqrt{4a})とするとき、以下の各問いに答えよ。\\
(1)\ n_Aの方程式を求めよ。\\
(2)直線ABと直線y=\sqrt{4a}とがなす角の2等分線の一つが、n_Aに一致する\\
とき、直線ABの方程式をaを用いて表せ。\\
(3)(2)のとき、点Bを通る直線r_Bを考える。r_Bと直線ABとがなす角の\\
2等分線の一つが、n_Bに一致するとき、r_Bの方程式をaを用いて表せ。\\
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
y=\sqrt{4a}、直線x=-1および(3)のr_Bで囲まれた図形の面積をS_2とする。\\
aを変化させたとき、\frac{S_1}{S_2}の最大値を求めよ。
\end{eqnarray}

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP