【高校数学】 数Ⅰ-96 円に内接する四角形 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-96  円に内接する四角形

問題文全文(内容文):
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。

①線分BDの長さは?

②四角形ABCDの面積は?
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。

①線分BDの長さは?

②四角形ABCDの面積は?
投稿日:2014.11.21

<関連動画>

福田の数学〜京都大学2025理系第2問〜不定方程式で表された数の最小値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の整数$x,y,z$を用いて

$N=9z^2=x^6+y^4$

と表される正の整数$N$の最小値を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

【5分でOK!思考力、対応力を高めるために!】整数:日本大学習志野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学習志野高等学校

自然数Nの一の位を$《N》$で表すとき
$《2^{2021}》+《2^{117}》+《2^{56}》=$▭
この動画を見る 

福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

ある凸多面体において、

三角形の面が$m$枚あり、

(他の形の面も含まれている可能性がある)

すべての頂点にはちょうど$4$枚の辺が集まって

いるとする。

このとき、$m$の最小値を求めて下さい。
    
この動画を見る 

大学入試問題#548「結局は定石通り」 広島大学AO(2022) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
0 \lt a \lt b \lt c \\
\displaystyle \frac{1}{ab}+\displaystyle \frac{1}{bc}+\displaystyle \frac{1}{ca}=\displaystyle \frac{1}{3}
\end{array}
\right.
\end{eqnarray}$
を満たす整数の組$(a,b,c)$をすべて求めよ。

出典:2022年広島大学AO入試
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 
PAGE TOP