【数B】ベクトル:ベクトルの基本④内積の基本的な考え方 - 質問解決D.B.(データベース)

【数B】ベクトル:ベクトルの基本④内積の基本的な考え方

問題文全文(内容文):
内積の基本的な考え方に関して解説していきます.
チャプター:

0:00 オープニング
0:11 公式について
1:48 垂直のときは
2:38 エンディング 

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方に関して解説していきます.
投稿日:2022.06.06

<関連動画>

共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。

$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。

次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$


最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】

アイキャッチ画像
単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
この動画を見る 
PAGE TOP