問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
チャプター:
0:00 オープニング
0:07 恒等式の解き方確認
0:48 解説開始!
6:19 解説終了
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
投稿日:2023.10.31