【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説

問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
チャプター:

0:00 オープニング
0:20 問題の分析と方針
2:20 図形の特徴を考えて立式
4:50 点と直線の距離の公式
9:51 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
投稿日:2021.08.21

<関連動画>

大学入試問題#293 横浜国立大学後期(2010) #定積分 #King property

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin^3x}{\sin^2x+8}dx$

出典:2010年横浜国立大学 入試問題
この動画を見る 

大学入試問題#419「複素数の基本的な性質を網羅!」 東海大学医学部2017 #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ

出典:2017年東海大学医学部 入試問題
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 

大学入試問題#676「たぶん良い問題」 東京理科大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{4x+1}{x^4+2x^3+x+2}dx$

出典:2017年東京理科大学 入試問題
この動画を見る 

横浜市立(医)2n次方程式の実数解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'82横浜市立大学過去問題
$n \geqq 2$自然数
$\frac{x^{2n}}{2n+1} - \frac{x^{n+1}}{n+2} + \frac{x^{n-1}}{n} -1 = 0$
実数解の個数
この動画を見る 
PAGE TOP