福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

問題文全文(内容文):
${\large\boxed{5}}$aを実数とする。関数
$f(x)=-x^2+6x(a-2 \leqq x \leqq a)$
の最大値をg(a)、最小値をh(a)とする。このとき、
$ab$平面において$b=g(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ ア\ \ }$であり、
ab平面において$b=h(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学人間科学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$aを実数とする。関数
$f(x)=-x^2+6x(a-2 \leqq x \leqq a)$
の最大値をg(a)、最小値をh(a)とする。このとき、
$ab$平面において$b=g(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ ア\ \ }$であり、
ab平面において$b=h(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学人間科学部過去問
投稿日:2022.08.05

<関連動画>

【数Ⅰ】面積公式・ヘロンの公式・内接円の半径【小学生からの脱却!】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
面積公式・ヘロンの公式・内接円の半径に関して解説していきます.
この動画を見る 

因数分解の裏技

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たすき掛けの因数分解の裏技説明動画です
$5x^2-11x+2=??$
この動画を見る 

気付けば一瞬!!円と角の和

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x + \angle y = ?$
*図は動画内参照
この動画を見る 

円周角の定理のなぜ?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)
指導講師: 数学を数楽に
問題文全文(内容文):
円周角の定理
成り立つのはなぜ?
*図は動画内参照
この動画を見る 

【手元動画】数学IA 図形と計量の攻略法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\triangle ABC$において、$BC=2\sqrt{ 2 }$とする。
$\angle ACB$の二等分線と辺$AB$の交点を$D$とし、$CD=\sqrt{ 2 }, \cos \angle BCD=\displaystyle \frac{3}{4}$とする。
このとき、$BD=$[ア]であり$\sin \angle ADC=\displaystyle \frac{[イウ]}{[エ]}$である。
$\displaystyle \frac{AC}{AD}=\sqrt{ オ }$であるから$AD=[カ]$である。
$\triangle ABC$の外接円の半径は$\displaystyle \frac{キ\sqrt{ ク }}{ケ}$である
この動画を見る 
PAGE TOP