【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄

問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
チャプター:

0:00 オープニング
0:05 第一問(1)解説
1:13 第一問(2)解説
1:59 第二問(1)解説
3:13 第二問(2)解説
4:29 第三問(1)解説
6:52 第三問(2)解説
8:05 第三問(3)解説
10:14 エンディング

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
投稿日:2024.11.08

<関連動画>

福田のわかった数学〜高校1年生045〜三角形への応用(2)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(2)
右の図(※動画参照)において$\angle AMB=\angle BAC=\theta$、
$MC=AC=\sqrt2, AB=1$のとき
$BC$を求め、$\theta$の値を求めよ。
この動画を見る 

【#3】【因数分解100問】基礎から応用まで!(21)〜(30)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(21)$x^2-4x+4-y^2$
(22)$x^2-y^2+6y-9$
(23)$4a^2-4b^2+4b-1$
(24)$x^2-2xy+y^2-4z^2$
(25)$(x+2)^2+7(x+2)+6$
(26)$(x+y)^2-x-y-12$
(27)$6(x-y)^2-5(x-y)-4$
(28)$(a+b)^2+10c(a+b)+25c^2$
(29)$(x+y+2)(x+y-3)-6$
(30)$(x+2y)(x+2y-2z)-8z^2$
この動画を見る 

ガウス記号の入った二次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^2-2[x]-15=0$
この動画を見る 

【数Ⅰ】2次関数:放物線とx軸との交点の位置 その1+その2

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ 二次関数】
$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)このグラフとx軸の正の部分が異なる2点で交わる。
(2)グラフとx軸のx<-1の部分が異なる2点で交わる。
この動画を見る 

2つの円 埼玉県 令和4年度 数学 2022 入試問題100題解説77問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照

2022埼玉県
この動画を見る 
PAGE TOP