【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄

問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
チャプター:

0:00 オープニング
0:05 第一問(1)解説
1:13 第一問(2)解説
1:59 第二問(1)解説
3:13 第二問(2)解説
4:29 第三問(1)解説
6:52 第三問(2)解説
8:05 第三問(3)解説
10:14 エンディング

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
投稿日:2024.11.08

<関連動画>

【数Ⅰ】相反方程式の解法(奇数次数の場合)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
相反方程式という特殊な方程式の解法を説明します。こちらの動画では定義の説明と、奇数次数の場合の解法を紹介しています。
この動画を見る 

【高校数学】整式①~数学の基本~ 1-1【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】整式 数学の基本説明動画です
この動画を見る 

慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は実数である.
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2\leqq y\leqq 2$の範囲で$v(y)\geqq 0$であることを示せ.

慶應大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる
「匂い」「舌触り」、「味」の計4項目についてである。
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入
されていない正確な値である。(※動画参照)
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目
に対する評価の偏差の積の平均値である。
(1)$(\textrm{i})$患者番号5の「舌触り」に対する(t)の値は$\boxed{\ \ ニ\ \ }$である。
$(\textrm{ii})$「飲みやすさ」に対する評価の標準偏差の値は$\boxed{\ \ ヌ\ \ }$である。
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を
分数で表すと$\boxed{\ \ ネ\ \ }$である。
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」
の相関係数の値をそれぞれ$r_1,r_2,r_3$と表し、「匂い」、「舌触り」、「味」の評価の
平均値をそれぞれ$a_1,a_2,a_3$と表す。$a_i,r_i (1 \leqq i \leqq 3)$に対し、$\bar{ r }$と$\bar{ a }$は以下の式で定める。
$\bar{ r }=\frac{r_1+r_2+r_3}{3},\bar{ a }=\frac{a_1+a_2+a_3}{3}$
「飲みやすさ」との相関係数の値が最も1に近い評価項目は$\boxed{\ \ ノ\ \ }$である。
また、「$r_i-\bar{ r } \lt0$かつ$a_i-\bar{ a } \gt0$」を満たす評価項目をすべて挙げると$\boxed{\ \ ノ\ \ }$である。

(4)「匂い」、「舌触り」、「味」のうち、$\boxed{\ \ ハ\ \ }$にあてはまらない評価項目
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の
患者がXと「飲みやすさ」について再び評価した。
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。
改良後のXの評価の平均値を求めると$\boxed{\ \ ヒ\ \ }$であり、標準偏差は改良前調査における値と
比べて$\boxed{\ \ フ\ \ }$。また、「飲みやすさ」の評価については、改良前の調査において評価が
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると$\boxed{\ \ ヘ\ \ }$であり、
標準偏差は改良前の調査における値と比べて$\boxed{\ \ ホ\ \ }$。

2022慶應義塾大学薬学部過去問
この動画を見る 

ガウス記号の入った二次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^2-2[x]-15=0$
この動画を見る 
PAGE TOP