福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}

2022東京大学理系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}

2022東京大学理系過去問
投稿日:2022.02.26

<関連動画>

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$
この動画を見る 

難問!!最大公約数と最小公倍数の関係  西武文理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。

西部学園文理高等学校
この動画を見る 

整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
この動画を見る 
PAGE TOP