【高校数学】日本大学の過去問演習~指数・対数の問題~【大学受験】 - 質問解決D.B.(データベース)

【高校数学】日本大学の過去問演習~指数・対数の問題~【大学受験】

問題文全文(内容文):
日本大学の過去問演習 指数・対数の問題の解説動画です
チャプター:

00:00 はじまり

00:17 問題

00:53 問題解説

05:07 まとめ

05:36 問題と答え

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
日本大学の過去問演習 指数・対数の問題の解説動画です
投稿日:2021.09.02

<関連動画>

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}

2022上智大学理工学部過去問
この動画を見る 

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。

(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
  $\omega=x+yi$(x,yは実数)とおく。

2018東大理系過去問
この動画を見る 

南山大 指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ

出典:南山大学 過去問
この動画を見る 

【理数個別の過去問解説】1993年度京都大学 数学 理系後期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
この動画を見る 

三重大2020指数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての実数$x$に対して$2^{3x}\geqq 3・2^x-1$が成り立つ$a$の範囲を求めよ.

2020三重大過去問
この動画を見る 
PAGE TOP