日大(医)極限値 - 質問解決D.B.(データベース)

日大(医)極限値

問題文全文(内容文):
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$

出典:日本大学医学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$

出典:日本大学医学部 過去問
投稿日:2020.02.24

<関連動画>

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
この動画を見る 

大分大 ざ・見掛け倒しの問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\log_{10}\left(1+\dfrac{3}{n}\right)$
$10^{\displaystyle \sum_{k=1}^n a_k}$を$n$の式で表せ.

2021大分大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} xyz空間において、直方体ABCD-EFGHがz \geqq x^2+y^2\\
(0 \leqq z \leqq 1)を満たす立体の周辺および内部に存在する。この\\
直方体の面ABCD,EFGHはxy平面に平行であり、頂点A,B,C,D\\
は平面z=1上に、頂点E,F,G,Hは曲面z=x^2+y^2上に存在する。\\
\\
(1)直方体ABCD-EFGHの面ABCDおよびEFGHが1辺の長さa\\
の正方形のとき、正の実数であるaの取り得る値の範囲は\\
0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}であり、この直方体の体積は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2\\
である。\\
\\
(2)直方体ABCD-EFGHの面ABFEおよびDCGHが1辺の長さb\\
の正方形のとき、正の実数であるbの取り得る値の範囲は\\
0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}であり、この直方体の体積は\\
b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}である。\\
\\
(3)直方体ABCD-EFGHの全ての面が1辺の長さcの正方形のとき、すなわち\\
直方体ABCD-EFGHが立方体のとき、正の実数であるcの値は\\
\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}であり、立方体ABCD-EFGHの体積は\\
\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}である。
\end{eqnarray}
この動画を見る 

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 
PAGE TOP