日大(医)極限値 - 質問解決D.B.(データベース)

日大(医)極限値

問題文全文(内容文):
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$

出典:日本大学医学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$

出典:日本大学医学部 過去問
投稿日:2020.02.24

<関連動画>

福田の数学〜一橋大学2023年文系第2問〜共通接線が存在する条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ aを正の実数とする。2つの曲線$C_1$:y=$x^3$+2$ax^2$ および$C_2$:y=3$ax^2$$-\displaystyle\frac{3}{a}$ の両方に接する直線が存在するようなaの範囲を求めよ。

2023一橋大学文系過去問
この動画を見る 

【高校数学】 数Ⅱ-131 対数とその性質①

アイキャッチ画像
単元: #指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)

◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。

④$3^4=81$

⑤$8^{\frac{2}{3}}=4$

⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$

⑦$\log_264=6$

⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$

⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
この動画を見る 

三重大2020指数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての実数$x$に対して$2^{3x}\geqq 3・2^x-1$が成り立つ$a$の範囲を求めよ.

2020三重大過去問
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&3^a=7^b=441\\
&&\frac{ab}{a+b} = ?

\end{eqnarray}
$
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 
PAGE TOP