はじめしゃちょーの宝くじ710万円購入210万円当選を数学的に考える - 質問解決D.B.(データベース)

はじめしゃちょーの宝くじ710万円購入210万円当選を数学的に考える

問題文全文(内容文):
はじめしゃちょーの宝くじ710万円購入210万円当選を数学的に考えていきます.
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
はじめしゃちょーの宝くじ710万円購入210万円当選を数学的に考えていきます.
投稿日:2023.01.20

<関連動画>

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に
ついて、pは0以上の整数k, nを用いて$p =\frac{2k+1}{2^n}$と表せるので、このk, nを
答えよ。
(1)$A, B$がそれぞれ1回ずつTを振る
このときpを表すk, nは、$k=\boxed{ケ} ,\ n=\boxed{コ}$である。

(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状
況で、1回振り直してよい)
このときpを表すk,nは、$k=\boxed{サ} ,\ n=\boxed{シ}$である。

(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが1回振る。
このときpを表すk,nは、$k=\boxed{ス} ,\ n=\boxed{セ }$である。

(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回
振り直してよい)
このときpを表すk,nは、$k=\boxed{ソ} ,\ n=\boxed{タ}$である。

(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、
1回振り直してよい)
このときpを表すk,nは、$k=\boxed{チ} ,\ n=\boxed{ツ}$である。

2022上智大学理系過去問
この動画を見る 

共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計

アイキャッチ画像
単元: #数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均を$m$, 母標準偏差を150とする。

(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、$X$は$\boxed{\boxed{\ \ ア\ \ }}$
に従う。また、Xの平均(期待値)は$\boxed{\ \ イウ\ \ }$、標準偏差は$\boxed{\ \ エ\ \ }$である。

$\boxed{\boxed{\ \ ア\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布$N(0,1)$
①二項分布$B(0,1)$
②正規分布$N(100,0.5)$
③二項分布$B(100,0.5)$
④正規分布$N(100,36)$
⑤二項分布$B(100,36)$


(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率を$p_5$とおく。$p_5$の近似値を求めると、$p_5=\boxed{\boxed{\ \ オ\ \ }}$である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率を$p_4$とおくと、$\boxed{\boxed{\ \ カ\ \ }}$である。

$\boxed{\boxed{\ \ オ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.001$
①$0.003$
②$0.026$
③$0.050$
④$0.133$
⑤$0.497$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$p_4 \lt p_5$
①$p_4 = p_5$
②$p_4 \gt p_5$


(3)1週間の読書時間の母平均$m$に対する信頼度95%の信頼区間を
$C_1 \leqq m \leqq C_2$とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
$C_1+C_2=\boxed{\ \ キクケ\ \ }$、$C_2-C_1=\boxed{\ \ コサ\ \ }.\boxed{\ \ シ\ \ }$であることがわかる。
また、母平均$m$と$C_1,C_2$については$\boxed{\boxed{\ \ ス\ \ }}$。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪$C_1 \leqq m \leqq C_2$が必ず成り立つ
①$m \leqq C_2$は必ず成り立つが、$C_1 \leqq m$が成り立つとは限らない
②$C_1 \leqq m$は必ず成り立つが、$m \leqq C_2$が成り立つとは限らない
③$C_1 \leqq m$も$m \leqq C_2$も成り立つとは限らない


(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数を$n$とする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
$\boxed{\boxed{\ \ セ\ \ }}$。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪$n$は必ず36に等しい
①$n$は必ず36未満である
②$n$は必ず36より大きい
③$n$と36との大小はわからない


(5)(4)の図書委員会が行った調査結果による母平均$m$に対する信頼度95%の
信頼区間を$D_1 \leqq m \leqq D_2$、校長先生が行った調査結果による母平均$m$に対す
る信頼度95%の信頼区間を(3)の$C_1 \leqq m \leqq C_2$とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは$\boxed{\boxed{\ \ ソ\ \ }}と\boxed{\boxed{\ \ タ\ \ }}$である。

$\boxed{\boxed{\ \ ソ\ \ }}$, $\boxed{\boxed{\ \ タ\ \ }}$の解答群(解答の順序は問わない。)
⓪$C_1=D_1とC_2=D_2$が必ず成り立つ。
①$C_1 \lt D_2$または$D_1 \lt C_2$のどちらか一方のみが成り立つ。
②$D_2 \lt C_1$または$C_2 \lt D_1$となる場合もある。
③$C_2-C_1 \gt D_2-D_1$が必ず成り立つ。
④$C_2-C_1 = D_2-D_1$が必ず成り立つ。
⑤$C_2-C_1 \lt D_2-D_1$が必ず成り立つ。

2021共通テスト過去問
この動画を見る 

【数B】確率分布と統計的推測:正規分布表の見方と暗記すべき数字を説明します!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
必見!正規分布表の見方
正規分布表の1.96とは…?
この動画を見る 

【高校数学】模試に向けて今からでも間に合う!統計的な推測 2週間完成【①確率変数と確率分布、期待値、分散、標準偏差、確率変数の変換】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・3枚の硬貨を同時に投げるとき、表の出る枚数をXとする。確率変数Xの確率分布を求めよ。
・1個のサイコロを1回投げるとき、出る目の数をXとする。Xの期待値、分散、標準偏差を求めよ。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第3問〜確率分布と統計

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
ある大学には、多くの留学生が在籍している。この大学の留学生に対して学習や生活を支援する
留学生センターでは、留学生の日本語の学習状況について関心を寄せている。

(1)この大学では、留学生に対する授業として、いかに示す三つの日本語学習コースがある。
初級コース:1週間に10時間の日本語の授業を行う
中級コース:1週間に8時間の日本語の授業を行う
上級コース:1週間に6時間の日本語の授業を行う
すべての留学生が三つのコースのうち、いずれか一つのコースのみに登録する
ことになっている。留学生全体における各コースに登録した留学生の割合は、
それぞれ 初級コース:20%, 中級コース:35%, 上級コース:$\boxed{\ \ アイ\ \ }%$
であった。ただし、数値はすべて正確な値であり、四捨五入されていないものとする。
この留学生の集団において、一人を無作為に抽出したとき、その留学生が1週間に
受講する日本語学習コースの授業の時間数を表す確率変数をXとする。
$X$の平均(期待値)は$\displaystyle \frac{\boxed{\ \ ウエ\ \ }}{2}$であり、$X$の分散は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{20}$である。

次に、留学生全体を母集団とし、$a$人を無作為に抽出した時、初級コースに登録した人数
を表す確率変数を$Y$とすると、$Y$は二項分布に従う。このとき、$Y$の平均$E(Y)$は

$E(Y)=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$

である。
また、上級コースに登録した人数を表す確率変数を$Z$とすると、$Z$は二項分布に従う。
$Y,Z$の標準偏差をそれぞれ$\delta(Y),\delta(Z)$とすると

$\displaystyle \frac{\delta(Z)}{\delta(Y)}=\displaystyle \frac{\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コサ\ \ }}}{\boxed{\ \ シ\ \ }}$

である。
ここで、$a=100$としたとき、無作為に抽出された留学生のうち、初級コースに
登録した留学生が28人以上となる確率を$p$とする。$a=100$は十分大きいので、
$Y$は近似的に正規分布に従う。このことを用いて$p$の近似値を求めると、
$p=\boxed{\boxed{\ \ ス\ \ }}$である。


$\boxed{\boxed{\ \ ス\ \ }}$については。最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.002$ ①$0.023$ ②$0.228$ ③$0.477$ ④$0.480$ ⑤$0.977$


(2)40人の留学生を無作為に抽出し、ある1週間における留学生の日本語学習コース
以外の日本語の学習時間(分)を調査した。ただし、日本語の学習時間は母平均$m$,
母分散$\delta^2$の分布に従うものとする。
母分散$\delta^2$を$640$と仮定すると、標本平均の標準偏差は$\boxed{\ \ セ\ \ }$となる。
調査の結果、40人の学習時間の平均値は120であった。標本平均が近似的に
正規分布に従うとして、母平均$m$に対する信頼度95%の信頼区間を$C_1 \leqq m \leqq C_2$とすると
$C_1=\boxed{\ \ ソタチ\ \ }.\boxed{\ \ ツテ\ \ }, C_2=\boxed{\ \ トナニ\ \ }.\boxed{\ \ ヌネ\ \ }$
である。


(3)(2)の調査とは別に、日本語の学習時間を再度調査することになった。そこで、
50人の留学生を無作為に抽出し、調査した結果、学習時間の平均値は120であった。
母分散$\delta^2$を640と仮定したとき、母平均$m$に対する信頼度95%の信頼区間を
$D_1 \leqq m \leqq D_2$とすると、$\boxed{\boxed{\ \ ノ\ \ }}$が成り立つ。
一方、母分散$\delta^2$を960と仮定したとき、母平均$m$に対する信頼度95%の
信頼区間を$E_1 \leqq m \leqq E_2$とする。このとき、$D_2-D_1=E_2-E_1$と
なるためには、標本の大きさを50の$\boxed{\ \ ハ\ \ }.\boxed{\ \ ヒ\ \ }$倍にする必要がある。

$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪$D_1 \lt C_1$かつ$D_2 \lt C_2$  ①$D_1 \lt C_1$かつ$D_2 \gt C_2$
②$D_1 \gt C_1$かつ$D_2 \lt C_2$  ③$D_1 \gt C_1$かつ$D_2 \gt C_2$

2021共通テスト過去問
この動画を見る 
PAGE TOP